

General Certificate of Education Advanced Level Examination June 2010

Mathematics

MFP3

Unit Further Pure 3

Friday 11 June $2010 \quad 9.00$ am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x+3+\sin y
$$

and

$$
y(1)=1
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.
(b) Use the formula

$$
y_{r+1}=y_{r-1}+2 h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with your answer to part (a), to obtain an approximation to $y(1.2)$, giving your answer to three decimal places.

2 (a) Find the value of the constant k for which $k \sin 2 x$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y=\sin 2 x \tag{3marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.

3 (a) Explain why $\int_{1}^{\infty} 4 x \mathrm{e}^{-4 x} \mathrm{~d} x$ is an improper integral.
(b) Find $\int 4 x \mathrm{e}^{-4 x} \mathrm{~d} x$.
(c) Hence evaluate $\int_{1}^{\infty} 4 x \mathrm{e}^{-4 x} \mathrm{~d} x$, showing the limiting process used.

4 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{3}{x} y=\left(x^{4}+3\right)^{\frac{3}{2}}
$$

given that $y=\frac{1}{5}$ when $x=1$.

5 (a) Write down the expansion of $\cos 4 x$ in ascending powers of x up to and including the term in x^{4}. Give your answer in its simplest form.
(2 marks)
(b) (i) Given that $y=\ln \left(2-\mathrm{e}^{x}\right)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$.
(You may leave your expression for $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}}$ unsimplified.)
(6 marks)
(ii) Hence, by using Maclaurin's theorem, show that the first three non-zero terms in the expansion, in ascending powers of x, of $\ln \left(2-\mathrm{e}^{x}\right)$ are

$$
-x-x^{2}-x^{3}
$$

(c) Find

$$
\lim _{x \rightarrow 0}\left[\frac{x \ln \left(2-\mathrm{e}^{x}\right)}{1-\cos 4 x}\right]
$$

6 The polar equation of a curve C_{1} is

$$
r=2(\cos \theta-\sin \theta), \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(a) (i) Find the cartesian equation of C_{1}.
(ii) Deduce that C_{1} is a circle and find its radius and the cartesian coordinates of its centre.
(b) The diagram shows the curve C_{2} with polar equation

$$
r=4+\sin \theta, \quad 0 \leqslant \theta \leqslant 2 \pi
$$

(i) Find the area of the region that is bounded by C_{2}.
(ii) Prove that the curves C_{1} and C_{2} do not intersect.
(iii) Find the area of the region that is outside C_{1} but inside C_{2}.

7 (a) Given that $x=t^{\frac{1}{2}}, x>0, t>0$ and y is a function of x, show that:
(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 t^{\frac{1}{2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}$;
(ii) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=4 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} t}$.
(b) Hence show that the substitution $x=t^{\frac{1}{2}}$ transforms the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(8 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+12 x^{3} y=12 x^{5}
$$

into

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+3 y=3 t
$$

(c) Hence find the general solution of the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-\left(8 x^{2}+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+12 x^{3} y=12 x^{5}
$$

giving your answer in the form $y=\mathrm{f}(x)$.

END OF QUESTIONS

